Notizen / Notes

Synthesis of β-Oxo Esters from Silyl Enol Ethers and Dichlorobis(phenoxy)methane

Herbert Mayr*, Anton Cambanis, and Englbert Bäuml

Institut für Chemie, Medizinische Universität zu Lübeck, Ratzeburger Allee 160, D-2400 Lübeck 1, Federal Republic of Germany

Received February 2, 1990

Key Words: Carboxylation / Aryloxycarbonylation / Siloxyalkenes / Silyl Enol Ethers / Acetals, dichloro / β-Oxo esters

Dichlorobis(phenoxy)methane (1) reacts with trimethylsiloxyalkenes in the presence of 1.2 equiv. of TiCl₄ to give β -oxo esters in 44–82% yield. The title compound 1 is thus employed as a PhO₂C $^{\oplus}$ equivalent.

Bis(aryloxy)dichloromethanes (e. g. 1) are readily available by radical-induced chlorination of formaldehyde diaryl acetals¹⁾. Like 2,2-dichloro-1,3-benzodioxol, which is used for the electrophilic carboxylation of aromatic compounds²⁾ and of alkenes³⁾, they represent RO_2C^{\oplus} equivalents and have been employed for the synthesis of β , γ -unsaturated esters from allylsilanes⁴⁾. In this paper we report on the reaction of bis(aryloxy)dichloromethanes with silyl enol ethers under Lewis-acidic conditions yielding β -oxo esters in moderate to good yields. Since silyl enol ethers may regioselectively be synthesized from the corresponding ketones⁵⁾, the two-step sequence according to eq. (1) represents a useful alternative for the generation of β -oxo esters from ketones, which has previously been carried out under strongly basic conditions using dialkyl carbonates⁶⁾, dialkyl oxalates⁷⁾, methyl methoxymagnesium carbonate⁸⁾, or methyl cyanoformate⁹⁾.

$$R \xrightarrow{Q} R^{1} \qquad \qquad Me_{3}SiO \xrightarrow{R^{1}} \qquad \frac{PhO}{r} \xrightarrow{CCl} 1 \qquad OO$$

$$R \xrightarrow{R^{2}} \qquad R^{2} \xrightarrow{TiCl_{4}} \qquad R \xrightarrow{R^{1}} \qquad QPI$$

$$2 \text{ a - i} \qquad \qquad 3 \text{ a - i}$$

The experimental conditions of the reaction of 1 with the silyl enol ether 2g have been optimized. Poor yields of 3g are obtained, when 1 is treated with 2g in CH_2Cl_2 in the presence of $ZnCl_2/Et_2O^{10}$ (1.5 equiv.) or in the presence of 0.1 equiv. of $TiCl_4$ (<20%). With $SnCl_4$ (1.3 equiv.) in CH_2Cl_2 , 27% of 3g is isolated, and an almost quantitative yield of crude 3g is obtained, when 1.2 equiv. of $TiCl_4$ is added to a mixture of 1 and 2g in CH_2Cl_2 at $-78^{\circ}C^{11}$.

Table 1 (entries a-1) shows that silyl enol ethers, generated from saturated ketones, may efficiently be converted into β -oxo esters according to this method. Only one of the possible diastereoisomers is obtained from compounds 2e and 2f. Though some of these compounds are enolizable (3b-e), the NMR spectra, taken immediately after dissolving these compounds in CDCl₃, indicate the presence of pure keto compounds, and only in the case of 3b, 10-15% of an enol has been detected. After several days, a ketone-to-enol ratio of 60:40 is observed for 3c, while the spectra of the other compounds have remained unchanged 12.

Table 1. Titanium(IV) chloride promoted reactions of dichlorobis-(phenoxy)methane (1) with trimethylsiloxyalkenes 2

Reactants		Products		Yield (%)	IR ν(CO) [cm ⁻¹]
TMSO —	2a	O O O	3a	71	1758, 1714
OTMS	2b	OPh	3b	81	1764, 1701
OTMS	2c	OPh OPh	3c	68	1763, 1696
ОТМ	1S 2d	OPh	3d	75	1748, 1708
ОТ	2e MS	6 1 2 0 OPh 0 OPh	3e	54	1 77 2, 1731
NOTE:	AS 2f	OPh	3f	46	17 57, 1708
TMSO	2g	H OPh	3g	74	1761, 1727
TMSO	2h	0 2 1 0	3h OPh	44	1755, 1670
TMSO CH ₃ O	2i	CH ₃ O OPh	3i	82	1760, 1738

1572

Examples g—i suggest that 1 may also be used for the carboxylation of silyl enol ethers derived from aldehydes (2g), of siloxy dienes (2h), and ketene silyl acetals (2i), but experiments with 1-(trimethylsiloxy)indene and 1-(trimethylsiloxy)-1,3-butadiene have not been successful.

Experimental

IR: IR-435 (Shimadzu). — NMR: XL 200 (Varian), internal standard TMS; for spectra of higher order, virtual couplings are listed. — MS: 70-250 E (VG-Instruments).

Dichlorobis(phenoxy)methane (1) was prepared by chlorination of bis(phenoxy)methane ¹⁾. The silyl enol ethers 2a - h were synthesized from the corresponding carbonyl compounds by treatment with Me₃SiCl, NaI, and $(C_2H_5)_3N$ in CH₃CN according to the procedures A and D described by Cazeau et al. ¹³⁾. The silylated ketene acetal 2i is commercially available (Fluka).

Caution: Because of the known toxicity of chloro ethers, all operations should be carried out in an efficient hood, and skin contact should be avoided.

Phenyl 2,2-Dimethyl-3-oxobutyrate (3a). - General Procedure: Compounds 1 (0.80 g, 3.0 mmol) and 2a (0.52 g, 3.3 mmol) were dissolved in 25 ml of CH_2Cl_2 at $-78^{\circ}C$. A solution of $TiCl_4$ (0.76 g, 4.0 mmol) in 10 ml of CH₂Cl₂ was added dropwise with stirring (ca. 5 min), and the mixture was kept at -78° C. After 10 h, the dark brown solution was washed with cold 3% aqueous HCl to give a colorless mixture. The organic layer was concentrated to yield an oily residue which was dissolved in pentane and repeatedly washed with 5% aqueous Na₂CO₃ solution to remove phenol. After drying with Na₂CO₃ and evaporation of pentane, the residue was purified by layer chromatography [silica gel, hexane/ether (95:5)] yielding 0.51 g of product. Distillation [73-76°C (bath)/0.1 mbar] afforded 0.44 g (71%) of 3a. - ¹H NMR (CDCl₃): $\delta = 1.52$ (s, 6H), 2.30 (s, 3H), 7.05-7.40 (m, 5H). - ¹³C NMR (CDCl₃): $\delta = 21.86$ (q, 2-CH₃), 25.77 (q, C-4), 56.02 (s, C-2), 121.11 (d, C_o), 126.10 (d, C_p), 129.49 (d, C_m), 150.50 (s, C_i), 172.18 (s, C_i -1), 205.32 (s, C_i -3). — MS (70 eV): m/z (%) = 206 (28) [M⁺], 164 (34), 113 (51), 94 (100), 85 (56), 70 (53), 57 (31), 43 (98).

> C₁₂H₁₄O₃ (206.2) Calcd. C 69.89 H 6.84 Found C 69.87 H 6.73

Phenyl 2-Oxocycloheptanecarboxylate (3b): A mixture of compounds 1 (0.80 g, 3.0 mmol) and 2b (0.61 g, 3.3 mmol) was treated with 0.76 g (4.0 mmol) of TiCl₄ as described before and worked up after 20 h. Layer chromatography [silica gel, hexane/ether (3:1)] afforded 0.62 g of 3b, which was distilled to yield 0.56 g (81%) of an analytically pure material with bp 110–115°C (bath)/0.1 mbar. - ¹H NMR (CDCl₃): δ = 1.35–2.13, 2.17–2.34, 2.47–2.46 (3 m, 10 H), 3.84 (dd, J = 10.1 Hz, J = 3.7 Hz, 0.9 H, keto tautomer), 7.08–7.48 (m, 5 H), 12.53 (br. s, 0.1 H, enol tautomer). - ¹³C NMR (CDCl₃): δ = 24.04, 27.47, 28.22, 29.45, 43.29 (5 t, C-3, C-4, C-5, C-6, C-7), 58.67 (d, C-1), 121.45 (d, C_o), 125.94 (d, C_p), 129.38 (d, C_m), 150.57 (s, C_i), 169.35 (s, CO₂Ph), 208.66 (s, C-2); signals for the enol species (<15%): δ = 24.56, 24.63, 31.95, 35.61 (t), 101.21 (s), 121.79 (d), 125.74 (d), 129.51 (d), 150.49 (s), 172.12 (s). - MS (70 eV): m/z (%) = 232 (1) [M⁺], 139 (58), 94 (100).

C₁₄H₁₆O₃ (232.3) Calcd. C 72.39 H 6.94 Found C 72.20 H 7.02

Phenyl 2-Oxocyclooctanecarboxylate (3c): Compound 1 (1.2 g, 4.5 mmol) was treated with 2c (1.0 g, 5.1 mmol) in the presence of $TiCl_4$ (1.1 g, 5.8 mmol) for 18 h to give 3c. Distillation [125-130°C (bath)/0.2 mbar] afforded 0.75 g (68%) of oily 3c which solidified;

mp 70–72°C (pentane/ether). — ¹H NMR (CDCl₃, 40°C): δ = 1.25–2.27, 2.48–2.76 (2 m, 12 H), 3.86 (dd, J = 8 Hz, J = 7 Hz, 1 H), 7.01–7.40 (m, 5 H). — ¹³C NMR (CDCl₃): δ = 24.49, 24.66, 24.74, 27.30, 29.48, 42.36 (6 t, C-3, C-4, C-5, C-6, C-7, C-8), 56.34 (d, C-1), 121.34 (d, C_o), 125.97 (d, C_p), 129.38 (d, C_m), 150.45 (s, C_i), 168.81 (s, CO₂Ph), 211.71 (s, C-2); signals for the enol species: δ = 24.06, 26.05, 26.54, 28.77, 30.04, 32.59 (6 t, C-3, C-4, C-5, C-6, C-7, C-8), 98.79 (s, C-1), 121.78 (d, C_o), 125.77 (d, C_p), 171.70 (s, CO₂Ph), 178.60 (s, C-2). — MS (70 eV): m/z (%) = 246 (1) [M⁺], 153 (100), 94 (32), 55 (54).

C₁₅H₁₈O₃ (246.3) Calcd. C 73.15 H 7.37 Found C 73.13 H 7.27

Phenyl 2-Oxocyclododecanecarboxylate (3d): Compound 1 (0.80 g, 3.0 mmol) was treated with 2d (0.84 g, 3.3 mmol) and TiCl₄ (0.76, 4.0 mmol) for 24 h according to the described procedure. The residue, obtained after evaporation of pentane (0.90 g), was recrystallized from hexane to give 0.67 g (75%) of 3d with mp 81 – 83°C. – ¹H NMR (CDCl₃): δ = 1.05 – 2.08, 2.10 – 2.56, 2.62 – 2.91 (3 m, 20 H), 3.87 (dd, J = 11.0 Hz, J = 3.7 Hz, 1 H), 6.97 – 7.46 (m, 5 H). – ¹³C NMR (CDCl₃): δ = 22.01, 22.31, 22.83, 23.85, 24.07 (high intensity), 25.26, 25.58, 26.77, 38.38, (9 t, C-3 – C-12), 57.57 (d, C-1), 121.24 (d, C_o), 126.07 (d, C_p), 129.46 (d, C_m), 150.39 (s, C_i), 168.51 (s, CO_2 Ph), 206.06 (s, C-2). – MS (70 eV): m/z (%) = 302 (1) [M⁺], 209 (100), 94 (23), 77 (23), 55 (27), 41 (21).

 $C_{19}H_{26}O_3$ (302.4) Calcd. C 75.46 H 8.67 Found C 75.37 H 8.57

Phenyl Camphor-3-carboxylate (3e) was synthesized by reaction of 1 (1.2 g, 4.5 mmol) with 2e (1.1 g, 4.9 mmol) in the presence of TiCl₄ (1.1 g, 5.8 mmol) at -78° C for 20 h. Chromatographic purification of the product [silica gel, hexane/ether (4:1)] gave 0.65 g (54%) of 3e which was recrystallized from hexane; mp 69 – 70°C. – ¹H NMR (CDCl₃): δ = 0.94, 0.98, 1.06 (3 s, 9H), 1.48 – 2.07 (m, 4H), 2.60 (br. t, J = 4.4 Hz, 1H), 3.58 (dd, J = 1.9 Hz, J = 4.7 Hz, 1H), 7.00 – 7.43 (m, 5 H). – ¹³C NMR (CDCl₃): δ = 9.55 (q, 1-CH₃), 18.79, 19.54 (2 q, 7-CH₃), 22.52 (t, C-5), 29.40 (t, C-6), 45.88 (d, C-4), 47.23 (s, C-7), 55.50 (d, C-3), 58.59 (s, C-1), 121.46 (d, C_o), 126.01 (d, C_p), 129.41 (d, C_m), 150.33 (s, C_i), 168.17 (s, CO₂Ph), 210.81 (s, C-2). – MS (70 eV): m/z (%) = 272 (5) [M⁺], 179 (100), 151 (45), 123 (18), 94 (20), 83 (37), 55 (17), 41 (24).

C₁₇H₂₀O₃ (272.3) Calcd. C 74.97 H 7.40 Found C 74.95 H 7.46

Phenyl 1-Methyl-4-(1-methylvinyl)-2-oxocyclohexanecarboxylate (3f) was prepared by treatment of 1 (0.80 g, 3.0 mmol) with 2f (0.74 g, 3.3 mmol), and TiCl₄ (0.76 g, 4.0 mmol) at -78° C for 17 h. Purification of the product by column chromatography [silica gel, hexane/ether (95:5)] gave 0.45 g of 3f which was further purified by distillation yielding 0.37 g (46%) of product with bp 130 to 135° C/0.15 mbar. - ¹H NMR (CDCl₃): $\delta = 1.53$ (s, CH₃), 1.74 to 2.05 (m, superimposed by br. s at 1.77, 7 H), 2.42-2.58 (m, 1 H), 2.63 (m_c, 2H), 4.76, 4.86 (2 br. s, 2H), 7.05 – 7.45 (m, 5H). – ¹³C NMR (CDCl₃): $\delta = 20.48$, 21.20 (2 q, 1-CH₃, CH₃C=), 25.40 (t, C-5), 33.68 (t, C-6), 43.35 (t, C-3), 44.22 (d, C-4), 57.19 (s, C-1), 111.27 (t, $CH_2 =$), 121.40 (d, C_o), 125.96 (d, C_p), 129.42, (d, C_m), 145.48 (s, $C = CH_2$), 150.73 (s, C_i), 171.92 (s, CO_2Ph), 208.34 (s, C-2). — MS (70 eV): m/z (%) = 272 (12) [M⁺], 179 (83), 151 (15), 123 (30), 109 (51), 107 (55), 97 (100), 94 (41), 81 (51), 69 (38), 67 (30), 55 (72), 41 (60).

C₁₇H₂₀O₃ (272.3) Calcd. C 74.97 H 7.40 Found C 74.92 H 7.37

Phenyl 2,2-Dimethyl-3-oxopropanoate (3g): The crude material obtained from 1 (1.2 g, 4.5 mmol), 2g (0.79 g, 5.5 mmol), and TiCl₄ (1.1 g, 5.8 mmol) according to the general procedure was purified

by column chromatography [silica gel, hexane/ether (4:1)] to yield 0.75 g of 3g. Distillation [84-88°C (bath)/0.4 mbar] afforded 0.63 g (74%) of analytically pure 3g. - ¹H NMR (CDCl₃): $\delta =$ 1.50 (s, 6 H), 7.05 - 7.41 (m, 5 H), 9.80 (s, 1 H). $- {}^{13}$ C NMR (CDCl₃): $\delta = 19.71 \text{ (q, 2-CH_3)}, 54.03 \text{ (s, C-2)}, 121.24 \text{ (d, Co)}, 126.21 \text{ (d, Co)},$ 129.51 (d, C_m), 150.32 (s, C_i), 171.30 (s, C_i -1), 198.50 (d, C_i -3). — MS (70 eV): m/z (%) = 192 (12) [M⁺], 164 (25), 99 (49), 94 (100), 71 (47), 70 (43), 43 (82).

> C₁₁H₁₂O₃ (192.2) Cacld. C 68.74 H 6.29 Found C 68.70 H 6.33

Phenyl (5,5-Dimethyl-3-oxo-1-cyclohexen-1-ylacetate) (3h): Compound 1 (0.80 g, 3.0 mmol) was treated with 2h (0.70 g, 3.3 mmol) and TiCl₄ (0.76 g, 4.0 mmol) for 18 h to give crude 3h which was purified by column chromatography [silica gel, ether/hexane (2:1)] and distillation [145-150°C (bath)/0.08 mbar] yielding 0.40 g of product. Recrystallization from hexane afforded 0.34 g (44%) of 3h with mp 68-69 °C. - ¹H NMR (CDCl₃): $\delta = 1.09$ (s, 6H), 2.28 (s, 2H), 2.38 (br. s, 2H), 3.47 (br. s, 2H), 6.09 (br. s, 1H), 7.05 - 7.50 (m, 5H). - ¹³C NMR (CDCl₃): $\delta = 28.13$ (q, 5-CH₃), 33.73 (s, C-5), 43.12, 43.56 (2 t, C-6, O₂CCH₂), 50.85 (t, C-4), 126.26 (d, C_o) , 126.13 (d, C_p) , 128.17 (d, C-2), 129.49 (d, C_m) , 150.29 (s, C_i) , 154.01 (s, C-1), 167.86 (s, CO₂Ph), 199.39 (s, C-3). - MS (70 eV): m/z (%) = 258 (4) [M⁺], 165 (100), 109 (12), 108 (25), 94 (22), 77 (7), 67 (10), 53 (10).

> C₁₆H₁₈O₃ (258.3) Calcd. C 74.40 H 7.02 Found C 74.31 H 7.10

Methyl Phenyl (2,2-Dimethylmalonate) (3i): The product generated from 1 (0.80 g, 3.0 mmol) and 2i (0.58 g, 3.3 mmol) in the presence of TiCl₄ (0.76 g, 4.0 mmol) within 14 h was purified by layer chromatography [silica gel, hexane/ether (95:5)] to yield 0.60 g of 3i, Distillation [74-78°C (bath)/0.1 mbar] afforded 0.54 g (82%) of analytically pure 3i. – ¹H NMR (CDCl₃): $\delta = 1.59$ (s, 6H), 3.81 (s, 3H), 7.04 – 7.45 (m, 5H). – ¹³C NMR (CDCl₃): δ = 22.75 (q, 2-CH₃), 50.08 (s, C-2), 52.69 (q, OCH₃), 121.21 (d, C_o), 125.99 (d, C_p), 129.43 (d, C_i), 150.67 (s, C_i), 171.36, 172.99 (2 s, CO_2CH_3 , CO_2Ph). - MS (70 eV): m/z (%) = 222 (30) [M⁺], 129 (97), 101 (100), 94 (80), 73 (45), 41 (27).

> C₁₂H₁₄O₄ (222.2) Calcd. C 64.85 H 6.35 Found C 64.48 H 6.57

CAS Registry Numbers

1: 4885-03-4 / 2a: 17510-44-0 / 2b: 22081-48-7 / 2c: 50338-42-6 / 2d: 51584-36-2 / 2e: 56613-17-3 / 2f: 72311-10-5 / 2g: 6651-34-9 / 2h: 80239-27-6 / 2i: 31469-15-5 / 3a: 103439-34-5 / 3b: 126256-23-3 / 3c: 126256-24-4 / 3d: 126256-25-5 / 3c: 126256-26-6 / 3f: 126256-27-7 / 3g: 89635-72-3 / 3h: 126256-28-8 / 3i: 126256-29-9

6) 6a) A. P. Krapcho, J. Diamanti, C. Cayen, R. Bingham, *Org. Synth.*, *Coll.* Vol. V (1973) 198. — 6b) S. B. Soloway, F. B. La-Forge, J. Am. Chem. Soc. 69 (1947) 2677.

⁷⁾ C. R. Hauser, F. W. Swamer, J. T. Adams, Org. React. 8 (1954)

8) 8a) M. Stiles, J. Am. Chem. Soc. 81 (1959) 2598. — 8b) S. W. Pelletier, R. L. Chappell, P. C. Parthasarthy, N. Lewin, J. Org. Chem. 31 (1966) 1747. — 8c) A. Pavia, F. Winternitz, R. Wylde, C. R. Acad. Sci. 261 (1965) 1026. — 8d) S. Julia, C. Huynh, C. R. Acad. Sci., Ser. C, 270 (1970) 1517.

9 L. N. Mander, S. P. Sethi, Tetrahedron Lett. 24 (1983) 5425.

¹⁰⁾ H. Mayr, W. Striepe, J. Org. Chem. **50** (1985) 2995.

11) Similar conditions have previously been applied for the tertiary alkylation of silyl enol ethers: M. T. Reetz, W. F. Maier, H. Heimbach, A. Giannis, G. Anastassious, Chem. Ber. 113 (1980)

12) Detailed studies on keto-enol equilibria of the corresponding ethyl and methyl esters have been described: ^{12a)} S. J. Rhoads, C. Pryde J. Org. Chem. **30** (1965) 3212. — ^{12b)} S. J. Rhoads J. Org. Chem. **31** (1966) 171. — ^{12c)} K. R. Kallury, U. J. Krull, M. Thompson J. Org. Chem. 53 (1988) 1320.

13) P. Cazeau, F. Duboudin, F. Moulines, O. Babot, J. Dunogues,

Tetrahedron 43 (1987) 2075.

[45/90]

¹⁾ A. Cambanis, E. Bäuml, H. Mayr, Synthesis 1988, 961; Bayer AG (H. Mayr, A. Cambanis, E. Bäuml, Inv.), D.A.S. 3821 130.0. ²⁾ H. Gross, J. Rusche, M. Mirsch, Chem. Ber. 96 (1963) 1382.

³⁾ H. Mayr, U. von der Brüggen, Chem. Ber. 121 (1988) 339.

⁴⁾ H. Mayr, A. Cambanis, E. Bäuml, Synthesis, 1988, 962.
5) 5a) E. W. Colvin, Silicon Reagents in Organic Synthesis, p. 99, Academic Press, London 1988. — 5b) E. W. Colvin, Silicon in Organic Synthesis, p. 198, Butherworths, London 1981. — 50 W. P. Weber, Silicon Reagents for Organic Synthesis, p. 255, Springer Verlag, Berlin 1983.